Induction of DARPP-32 by Brain-Derived Neurotrophic Factor in Striatal Neurons In Vitro Is Modified by Histone Deacetylase Inhibitors and Nab2
نویسندگان
چکیده
Neurotrophins and modifiers of chromatin acetylation and deacetylation participate in regulation of transcription during neuronal maturation and maintenance. The striatal medium spiny neuron is supported by cortically-derived brain derived neurotrophic factor and is the most vulnerable neuron in Huntington's disease, in which growth factor and histone deacetylase activity are both disrupted. We examined the ability of three histone deacetylase inhibitors, trichostatin A, valproic acid and Compound 4 b, alone and combined with brain derived neurotrophic factor (BDNF), to promote phenotypic maturation of striatal medium spiny neurons in vitro. Exposure of these neurons to each of the three compounds led to an increase in overall histone H3 and H4 acetylation, dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32) mRNA and protein, and mRNA levels of other markers of medium spiny neuron maturation. We were, however, unable to prove that HDAC inhibitors directly lead to remodeling of Ppp1r1b chromatin. In addition, induction of DARPP-32 by brain-derived neurotrophic factor was inhibited by histone deacetylase inhibitors. Although BDNF-induced increases in pTrkB, pAkt, pERK and Egr-1 were unchanged by combined application with VPA, the increase in DARPP-32 was relatively diminished. Strikingly, the NGF1A-binding protein, Nab2, was induced by BDNF, but not in the presence of VPA or TSA. Gel shift analysis showed that α-Nab2 super-shifted a band that is more prominent with extract derived from BDNF-treated neurons than with extracts from cultures treated with VPA alone or VPA plus BDNF. In addition, overexpression of Nab2 induced DARPP-32. We conclude that histone deacetylase inhibitors inhibit the induction of Nab2 by BDNF, and thereby the relative induction of DARPP-32.
منابع مشابه
Egr-1 induces DARPP-32 expression in striatal medium spiny neurons via a conserved intragenic element.
DARPP-32 (dopamine and adenosine 3', 5'-cyclic monophosphate cAMP-regulated phosphoprotein, 32 kDa) is a striatal-enriched protein that mediates signaling by dopamine and other first messengers in the medium spiny neurons. The transcriptional mechanisms that regulate striatal DARPP-32 expression remain enigmatic and are a subject of much interest in the efforts to induce a striatal phenotype in...
متن کاملEffects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science
Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملExpression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro.
The medium spiny neuron (MSN) is the major output neuron of the caudate nucleus and uses GABA as its primary neurotransmitter. A majority of MSNs coexpress DARPP-32 and ARPP-21, two dopamine and cyclic AMP-regulated phosphoproteins, and most of the matrix neurons express calbindin. DARPP-32 is the most commonly used MSN marker, but previous attempts to express this gene in vitro have failed. In...
متن کامل